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We developed a mechanistic mathematical model for predicting the progression of batch fermentation of
cucumber juice by Lactococcus lactis under variable environmental conditions. In order to overcome the defi-
ciencies of presently available models, we use a dynamic energy budget approach to model the dependence of
growth on present as well as past environmental conditions. When parameter estimates from independent ex-
perimental data are used, our model is able to predict the outcomes of three different temperature shift sce-
narios. Sensitivity analyses elucidate how temperature affects the metabolism and growth of cells through all
four stages of fermentation and reveal that there is a qualitative reversal in the factors limiting growth between
low and high temperatures. Our model has an applied use as a predictive tool in batch culture growth. It has
the added advantage of being able to suggest plausible and testable mechanistic assumptions about the inter-
play between cellular energetics and the modes of inhibition by temperature and end product accumulation.

A number of models have been developed to predict the
growth of bacteria in foods (3, 21, 24). Several common types
of these growth models, including the logistic, Gompertz, and
Richards curves, have been shown to be special cases of a more
general model (2, 27, 28). These models may be classified as
empirical models; they are sigmoidal functions that approxi-
mate bacterial growth over time. It has been argued, however,
that the usefulness of empirical models is limited and that a
more fundamental understanding of the changes taking place
during batch growth of bacteria will require the use of mech-
anistic models (2, 20, 31). A drawback of most of the above
models is the assumption of a constant environment during
growth, where growth is limited by a time- or cell density-
dependent function. From a mechanistic point of view, this is
clearly incorrect, as environmental variables, lack of nutrients,
and accumulation of end products are the controlling factors in
cell growth and death. Both the Monod equation (19), where
growth is limited by substrate concentration, and the Leven-
spiel modification (15), to include end product inhibition,
address this issue. These models for the growth of a single
organism include a simplifying assumption, however, of a con-
stant relationship between cell numbers, substrate utilization,
and inhibitory end product production.

Mechanistic models may be developed from theoretical or
experimentally determined data describing the cause or mech-
anism behind the dynamic changes observed in an experimen-
tal system. Several researchers have used dynamic models to
investigate the effects of various temperatures on the specific
growth rates or lag times of bacterial cultures (3, 4, 9, 29, 30).
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In all cases, some parameter values in these models were
allowed to vary with temperature. Van Impe et al. (29) used
temperature-dependent adjustment functions for modifying
the parameters for specific growth rate, asymptotic level of
(maximum) growth, and lag time with their dynamic model.
These functions, suggested by Zwietering et al. (32) for the ex-
plicit form of the modified Gompertz equation, were adapted
for use with the derivative dynamic model (29, 30). They in-
clude the square root model of Ratkowsky et al. (22) for mod-
ifying specific growth rate and asymptotic growth parameters
with temperature and a hyperbolic function (32) for modifying
lag with temperature. The model was validated by studies that
compared the observed and predicted growth with Brochothrix
thermosphacta or Lactobacillus plantarum for temperature
shifts and continuously varying temperatures during batch
growth of these organisms in pure culture (30). Baranyi and
Roberts (3), adapted an elegant mechanistic differential equa-
tion model (1, 2) for monitoring the growth of B. thermo-
sphacta during a time course of changing temperatures. This
model used an “adjustment” function that follows Michaelis-
Menten-type kinetics to reflect the accumulation of a critical,
yet undefined, intracellular component required for cell divi-
sion. The adjustment function allowed the model to predict
growth lag in response to changing environmental conditions.
In the temperature-dependent model (3), the parameters for
the specific growth rate and the adjustment function were
modified by the square root model of Ratkowsky et al. (22) to
reflect temperature changes. Validation studies of the tem-
perature-dependent Baranyi model showed very good
agreement between the growth of B. thermosphacta in broth
culture and the predicted results (3). However, this model
relied on cell density (intraspecific competition) to limit cell
growth. As a direct result, its predictive ability may be limited
when applied to environments in which interspecific competi-
tion plays an important role (5).

Breidt and Fleming (6) have developed a model that accu-
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TABLE 1. State variables of the model®

Symbol Meaning (unit) Observed range
t Time (h) 0-256
T  Temp (°C) 10-30
N Cell density (CFU ml™') 1.0 X 10°-2 x 10°
S Glucose in the medium (mM) 0-35
M Malic acid in the medium (mM) 0-12
Q  Intracellular energy (ATP) (% initial energy) 0-5
L Lactic acid in the medium (mM) 0-35

“ Q/N was normalized to 1 at the time of inoculation (¢ = 0). Therefore, Q/N
measures energy as a percentage of the energy quota that is typically present in
an overnight culture.

rately predicts the competition between Lactococcus lactis and
the pathogen Listeria monocytogenes in a vegetable broth fer-
mentation. This model included parameters for the inhibition
of cell growth and metabolism due to pH and protonated lactic
acid. One important prediction obtained from their competi-
tive growth experiments was that the primary factor limiting
the growth of L. monocytogenes in their model system was pH
and not the accumulation of protonated lactic acid. This con-
clusion was supported by independent measurements of the
parameters for pH and protonated acid sensitivity for L. mono-
cytogenes. This model did, however, fail to make the mecha-
nistic connection between nutrient acquisition and cell growth.
It did not account for glucose consumption, did not predict lag
or temperature effects, and relied on forcing functions to con-
trol pH dynamics.

Our objective was to develop a predictive methodology that
will aid in the understanding of bacteria interacting with chang-
ing environmental factors and, ultimately, bacterial competi-
tion. We also wanted a model that embodies a more funda-
mental understanding of the changes that take place during the
growth of a batch culture. To meet this goal, a complex mech-
anistic model could be used. It is well known, however, that
increasing the complexity of a model may lead to poorer val-
idation accuracy (i.e., because of a lack of parsimony). Heeding
this warning, we suggest that one way to ameliorate the defi-
ciencies in the above modeling efforts is to make a more mech-
anistic accounting of the cellular “energy state” with a dynamic
energy budget model (14), which links nutrient consumption,
energy, and growth. Thus, the work presented here is an at-
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tempt to meld the aspects of dynamic temperature change and
end product inhibition into a dynamic, energy-based model
describing lag, exponential, stationary, and death phases, while
quantitatively revealing the mechanisms governing these fea-
tures of the growth curve.

MATERIALS AND METHODS

Bacterial strains and media. L. lactis LA221 (chloramphenicol resistant [6])
was grown on M17 broth (Difco Laboratories, Detroit, Mich.) containing 1.5%
agar (Difco), 1% glucose (Sigma Chemical Co., St. Louis, Mo.), and 5 pg of
chloramphenicol/ml. Growth experiments were conducted in cucumber juice
(CJ) medium (8). Cucumbers were pureed and pressed to render raw juice,
which was frozen until needed. The raw juice was thawed and then clarified by
heating at 85°C for 5 min, followed by centrifugation at 13,000 X g for 20 min,
and filter sterilized. The CJ medium was prepared by adding 600 ml of juice to
400 ml of distilled water. The diluted juice was supplemented with 2% NaCl and
then filter sterilized as described by Daeschel et al. (8).

Fixed-temperature experiments. Overnight cultures were prepared by growing
LA221 in CJ at 30°C. Water-jacketed jars (Wheaton, Millville, N.J.) were filled
with 200 ml of fresh CJ and inoculated with 10° CFU ml of bacterial culture ™.
Each flask was sealed with a silicone stopper that contained a sterile syringe
sample port, through which an 18-gauge, 10-cm needle was passed. The growth
medium was kept well mixed by a magnetic stirrer. Compressed nitrogen was
humidified by sparging through deionized water, filtered (0.2-pwm-pore-size Mil-
lex-FG50 filter; Millipore Corp., New Bedford, Mass.), and released into the
headspace of the fermentor jars at a rate of 1.3 liters h~'. Temperature during
the fermentation was controlled by a circulating water bath (NESlab RTE-211;
NESlab, Portsmouth, N.H.). The temperature of the growth medium was mon-
itored directly by sterile thermocouples inserted through the silicone stoppers
and recorded by a microcomputer (OM-3000; Omega, Stamford, Conn.). Growth
observations at 10, 20, and 30°C included quantification of the number of CFU
per milliliter and glucose, malic acid, and lactic acid concentrations. Growth at a
particular temperature was monitored until all phases of growth had been ob-
served.

Biological assays. A sterile disposable syringe (1 ml; Becton Dickinson, Frank-
lin Lakes, N.J.) was used to withdraw a 1-ml sample from the fermentation flask
sample port. Cells were removed from 1-ml samples by centrifugation at 13,000
X g for 1.5 min. High-performance liquid chromatography (HPLC) analyses of
the supernatant quantified total lactic acid, glucose, and malic acid. HPLC was
carried out by the single injection procedure of McFeeters (16). The pH of the
medium was determined using an electronic pH meter (IQ 200; IQ Scientific
Instruments, Inc., San Diego, Calif.). Cell density (number of CFU per milliliter)
was determined by the spiral plate count method using an Autoplate 4000
Automated Spiral Plater (Spiral Biotech, Bethesda, Md.) and a Protos Plus
Colony Counter (Bioscience International, Rockville, Md.).

Statistics and programming. All computing was performed on a 300-MHz
Ultra Sparc 10 processor (Sun Microsystems, Palo Alto, Calif.). MATLAB (ver-
sion 5.3) software was used to solve the differential equations described in the

TABLE 2. Model parameters

Parameter Description (unit) Maximum-likelihood estimate
a Maximal bacterial growth rate (h™") 3.42
™ Maximal glucose consumption rate (CFU ml™') (mM™") 8.95 x 10710
Mo Maximal malate conversion rate (CFU ml™') (mM 1) 241 x107°
kq, Value of ¢ at which cell growth rate equals o/2 (unitless) 8.03
kq, Value of g at which glucose consumption rate equals /2 (unitless) 1.07
kqs Value of g at which glucose consumption rate equals p,/2 (unitless) 1.35 X 1072
3 Death rate when g = « (h™!) 7.02 X 102
S, Death rate sensitivity to changes in ¢ (unitless) 3.73 X 10°
B Conversion rate of glucose into energy (mM ' h™ ') 6.80 X 10°
Y Energy required for cell division (CFU ml™!) 2.07
K Energy cost per 1 mM lactic acid (mM ") 0.220
KT, Sensitivity of metabolic processes to deviations from optimal temp (h) 65.7
KT, Sensitivity of lactic acid inhibition to deviations from optimal temp (h) 39.5
Topt Optimal temp (°C) 30 (assumed)

T Energy cost for transient temp adjustment (°C™ ')

1.60 X 1073
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FIG. 1. Predictions of the calibrated model at 10°C. Note that the culture was incubated at 30°C prior to inoculation. The duration of lag phase
is indicated by the arrow. The symbols O (number of CFU/milliliter or millimolar concentration of malic acid), A (millimolar concentration of

Appendix and for all other programming. The equations were solved using the
adaptive stiff ordinary differential equation (ODE) solver. The ODE solver often
required temperatures and rates of temperature change at times different from
when they were actually sampled. This problem was overcome simply by using
linear interpolation to estimate the temperature values at the times requested.
The derivative of temperature with respect to time was calculated when needed
by using a centered finite difference approximation of the data, followed by linear
interpolation to the desired time point.

Parameters were estimated using all of the fixed-temperature data at once via
a maximum-likelihood method (10). We made no transformations of the data
prior to parameter estimation. The data for the cell density were heteroscedastic,
with sample variance approximately proportional to the magnitude of the den-
sity. A flexible distribution that has this property (constant coefficient of varia-
tion) is the gamma distribution. Schaffner (23) gives further evidence why cell
count data should be considered to have a gamma distribution. The HPLC data,
however, were assumed to have additive error that was normally distributed. We
also assumed that the model errors were all independent, which allowed us to
combine the likelihoods of all the data by simply including the log likelihoods in
the same sum. We assumed that the model parameters and variance components
were the same, regardless of temperature. We did, however, allow for experi-
ment-specific variation in initial conditions. This was reasonable since the exact
cell density at the time of inoculation was not known, and subsequent plate
counts during the experiment provided only limited information about what this
value should have been. By this method, our maximum-likelihood procedure

glucose), and O (millimolar concentration of lactic acid) represent experimental values, and the curves represent predicted values. Dashed curve

estimates for all 14 model parameters, 4 variance components, and 20 initial
conditions were calculated.

Since an adaptive ODE solver was used, neither the Jacobian nor the Hessian
likelihood function depends smoothly on perturbations in the parameters (11),
and traditional nonlinear least-squares algorithms failed. We used differential
evolution (25), a genetic algorithm, to achieve approximate parameter estimates,
followed by as many Nelder-Mead Simplex iterations as required to obtain
convergence.

Validation studies. Validation of the calibrated model was accomplished by
comparing predictions and data from variable environment experiments. In all
cases, two or more independent replicates of the fermentations were carried out.
In the first scenario, the temperature of the medium was maintained at 30°C for
3.75 h, and then it was dropped to 10°C. This temperature change was accom-
plished over a period of about 15 min. In order to compare the model’s predic-
tions about the impact of the previous energy state on growth, a second scenario
was conducted. In this scenario, cells were grown at 30°C for 3.75 h. Then 100 pl
of fermented broth was inoculated into 200 ml of fresh CJ also at 30°C. A third
scenario involved a reinoculation of cells after growth into fresh medium that
coincided with a temperature drop from 30 to 10°C.

Sensitivity analyses. We calculated sensitivity of a particular parameter as the
relative change in the model prediction for a 10% perturbation of that parameter
with all other parameters fixed at their estimated values (10). We were interested
in determining the sensitivity of cell density predictions. In mathematical terms,
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FIG. 2. Predictions of the calibrated model at 30°C. The symbols O (number of CFU/milliliter or millimolar concentration of malic acid),
A (millimolar concentration of glucose), and OJ (millimolar concentration of lactic acid) represent experimental values, and the curves represent

predicted values. Dashed curve = Q.

the sensitivity of cell density (log;, N) to perturbations in the i

was calculated as the centered finite approximation to

parameter (P;)

d(logiy N) _ logio NOb, + 005, — 10810 NOp, — 005 p,
P 0.1P,

Positive values of this measure indicated that, when a parameter is perturbed
upward, the model prediction for N is higher than when the unperturbed pa-
rameter is used. Conversely, negative sensitivities indicated that a positive per-
turbation resulted in a reduction in the predicted value for N. The advantage of
this approach was that it could be performed at each point in time over a
simulated fermentation. When the resulting sensitivity curve was plotted over
time, it was easy to determine the relative importance of the model parameters
at each of the different phases of bacterial growth.

We were also interested in the interaction between parameters that affected
model predictions. To do this we used a “multiple-parameter sensitivity analysis”
(26). From the analysis, we obtained the main effects, interaction terms, and
higher-order terms (analogous to a multiway analysis of variance). We per-
formed a multiple-parameter sensitivity analysis on the observed growth rate.
The model described in the Appendix tracks both cell growth as well as cell
death. Therefore, to determine the observed growth rate a smoothing spline was
fit to the cell density data from which the first derivative was calculated. The
largest positive value of the first derivative during the exponential growth phase
was taken as the observed growth rate. For the analysis of variance, we used a
central composite design (13), which allowed us to estimate all main effects and
first-order interactions. We limited our analysis of the observed growth rate to

the eight parameters determined to be important in the temporal analyses. The
resulting central composite design required 273 function evaluations. P values, it
should be noted, were meaningless in this context since there was technically no
error in simulated data (26).

RESULTS

Model development and calibration. In the Appendix we
present our model, which links the mechanisms of nutrient
acquisition, end product accumulation, temperature adapta-
tion, and cell growth. In particular, the rates of glucose con-
sumption, malic acid reduction, and cell growth and death all
depend on the present intracellular “energy” level (g). We
used the convention of assigning the initial value of g to 1
because our fermentations were inoculated from overnight
cultures of approximately the same age. This meant that g
should be interpreted as a measure of the percentage of the
initial intracellular “energy” typical in an overnight bacterial
culture. The state variables of the model are summarized in
Table 1, and the model parameters along with their biological
interpretations and estimated values are summarized in Table
2. Malic acid was present in the medium, and malolactic con-
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FIG. 3. Variable temperature validation (scenario no. 1). After 3.75 h, the temperature was reduced from 30 to 10°C over a period of about
15 min. Arrow indicates temperature shift. The symbols O (number of CFU/milliliter or millimolar concentration of malic acid), A (millimolar
concentration of glucose), and O (millimolar concentration of lactic acid) represent experimental values, and the curves represent predicted values.

Dashed curve = Q.

version of malic acid to lactic acid accounted for nearly one-
third of the total lactic acid produced during the fermentation.
We, therefore, included an equation for malic acid and as-
sumed a 1:1 ratio of malic-to-lactic conversion. Energy cost
due to temperature adaptation was modeled as the interaction
between the deviation from the optimal temperature and the
rate of temperature change. Temperature was also manifested
in the model in another way. Temperatures below the optimal
growth temperature (7,,,) should result in reductions in the
growth rate, glucose consumption rate, malic acid conversion
rate, and lactic acid toxicity rate. Intracellular energy should
also be reduced by the costs associated with cell growth and
total extracellular lactic acid concentration. Only temperatures
between 10 and 30°C were considered for this model.

To calibrate the model, we chose 30°C as a reference point
but also observed growth at 20 and 10°C. It is important,
however, that all overnight cultures were grown at 30°C prior
to inoculation for an experiment. Thus, inoculation at lower
temperatures in fact constituted a temperature shock to which
the bacteria had to adapt. Dependence on the rate of temper-
ature change, as well as the magnitude of the temperature

change, was manifested in the model in the equation for cel-
lular energy, as well as in the rate-specific reductions in the
glucose consumption rate, malic acid reduction rate, and lactic
acid inhibition rate (see Appendix). As can be observed in Fig.
1, the shift to low temperatures produces a lag-phase effect.
Cells inoculated into fresh medium at 30°C showed no lag (Fig.
2).

Model validation and analysis. After estimating the model
parameters from fixed-temperature data, we validated the
model against three temperature scenarios. The first scenario
consisted of a variable temperature regime. Bacteria were
grown for 3.75 h at 30°C, and then the temperature was
brought down to 10°C over a period of approximately 15 min.
Growth at 10°C was continued for another 60 h. Model pre-
dictions closely matched the experimental data. We can see in
Fig. 3 that the model accurately predicted the period of rapid
growth at 30°C, as well as the pronounced lag after the tem-
perature shift.

A second scenario (Fig. 4) involved a batch growth at 30°C,
followed by reinoculation into fresh medium also at 30°C. This
scenario was meant to challenge the ability of the bacterial
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population to rapidly recover from a toxic previous growth
environment once placed in fresh medium. At the point of
reinoculation, the model predictions for the cell counts and
internal pool of energy were adjusted for dilution and used as
initial conditions for a second simulation run. The energy
stores of the bacteria were rapidly replenished once placed in
fresh medium. There was no noticeable lag phase, and the
second profile nearly duplicated the behavior of the first pro-
file. In the third production scenario, the shift in temperature
from 30 to 10°C coincided with a reinoculation into fresh
medium. The results (Fig. 5) suggest an overall robustness of
the model to perturbations in temperature and initial condi-
tions.

Sensitivity analyses. We carried out a sensitivity analysis to
gain insight into which components of the model are most
important with respect to growth regulation in response to
changes in temperature. For example, in Fig. 6 and 7, we used
a “temporal sensitivity analysis” to measure sensitivity with
respect to predicted cell density for the fixed-temperature fer-
mentations. In general, the magnitudes of the sensitivities in-

crease as the temperature decreases. At 10°C, cell counts dur-
ing the exponential and stationary phases are positively
affected by positive perturbations in p,, 8,, KT,, and kq, but
are negatively affected by positive perturbations in «, 7, vy, and
kq,. 8, is important only in death phase, where it had an
increasingly negative effect. There was a reversal in the signs of
all parameter sensitivities near the transition from stationary to
death phase (Fig. 6). This reversal occurs to a lesser extent at
20°C (data not shown) and is absent in the analysis at 30°C
(Fig. 7). Particularly striking are the curves for parameters o
and kq,, which represent growth rate and energy (respective-
ly), and change in sign from the analysis at 10°C to the analysis
at 30°C. Positive perturbations in k (energy cost of acid stress)
have a relatively larger negative effect at 30°C (Fig. 7) than at
the lower temperatures (Fig. 6), and the positive perturbations
of kq, were larger than the other parameters during the expo-
nential and stationary phases at 30°C (Fig. 7).

While this kind of analysis is useful in exploring the effect of
a single parameter, we are also interested in understanding the
interplay between parameters. We found that the exponential
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and stationary phases were most sensitive to perturbations in
the parameters. Therefore, we conducted a multiple-sensitivity
analysis of the maximal observed growth rate to gain a better
understanding of how the model behaves during these phases
of growth. The main effects, interaction terms, and second-
order effects for simulations at 10 and 30°C are reported in
Tables 3 and 4, respectively. Comparison of the data in Tables
3 and 4 reveals that p, and B are the most important param-
eters in determining the growth rate. The fact that the signs of
a and kq, in Table 4 are the opposite of what they were in
Table 3 suggests that growth is limited in a manner at 10°C
fundamentally different from that at 30°C. The observed
growth rate, irrespective of temperature, was most strongly
influenced by the glucose consumption rate (p,), glucose-to-
energy conversion rate (), and maximal growth rate (o). The
growth rate is least affected by the energetic cost of reproduc-
tion (y) and the energy half-saturation constant for glucose
consumption (kq,). The energetic cost of temperature adapta-
tion (1) is only important in the 10°C analysis (Table 4), where
it tends to manifest a negative effect on growth rate through its
negative interactions with w,, B, KT, and kq;.

DISCUSSION

There is generally an inverse relationship between model
complexity and model robustness (3, 10). Kooijman (14), how-
ever, argues that “a fair comparison of models should be based
on the number of parameters per variable described, not on
absolute number.” We have developed a model that predicts
not only cell density (N) but also reliably predicts glucose,
lactic acid, and malic acid concentrations and gives substantive
and experimentally verifiable predictions of intracellular en-
ergy using only 14 model parameters. In this regard, our mod-
el’s complexity is on par with that of presently available mod-
els.

Included in Fig. 1 to 5 are the predicted internal energy
profiles (Q) and the per-cell internal energy (g = Q/N) profiles.
The model clearly predicted reductions in energy available for
growth immediately after a temperature shift or when end
product inhibition ensues in the stationary phase. Currently, no
experiments have been conducted with L. lactis LA221 to sup-
port this, and this is the subject of future work in our labora-
tory. However, Mercade et al. (17) have shown that the yield of
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ATP of L. lactis decreased from 11.5 g mol ' at a pH of 6.6 to
5 g mol ' at a pH of 4.4, thus demonstrating an energy drain
due to acidic conditions. Jetton et al. (12) have shown that
starved cells of Methanothrix soehngenii contained relatively
high levels of AMP (2.2 nmol/mg of protein) but essentially no
ADP or ATP during acetate degradation. Addition of new
substrate, however, quickly brought the ATP levels back up to
concentrations of about 1.4 nmol/mg of protein. The gram-
negative bacterium Pectinatus frisingensis has been shown by
Chibib and Tholozan (7) to experience decreases in ATP,
ADP, and AMP concentrations during cold shocks (30 to
20°C). The bacteria returned to a preshock metabolic state
when returned to 30°C in the presence of glucose. Metge et al.
(18) showed that the total adenine nucleotide content for a
species of Pseudomonas decreased from 153 X 1072 mol
cell”! during exponential phase to 56 X 1072 mol cell ™!
during stationary phase.

Interpretation of the temporal sensitivity analyses in Fig. 6
and 7 is straightforward. By conducting the temporal sensitivity
analyses at different temperatures, we were able to see how

temperature affects the relative importance of each parameter
in relation to model predictions. The sensitivity of « (the max-
imum growth rate of the cells) became negative at low tem-
peratures, k (the parameter that controls the energy cost of cell
division) became relatively unimportant at low temperatures,
and 7 (energy cost for transient temperature adjustment) be-
came important only at low temperatures. These results sug-
gest that growth at colder temperatures was limited primarily
by the requirements for temperature adaptation, while growth
at 30°C was limited primarily by acid stress. These results also
suggest that at low temperatures it was more advantageous to
divert energy to temperature adaptation. This idea is also sup-
ported by the large negative sensitivity of parameter vy (energy
required for cell division) (at 10°C) seen in Fig. 6, since it is this
parameter that controls how much energy is spent on repro-
duction.

The sign reversal of nearly every parameter sensitivity at the
end of the stationary phase in Fig. 6 is striking but entirely
reasonable. This characteristic of the sensitivity analysis comes
from the fact that the factors that promote strong and rapid
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FIG. 7. Temporal sensitivity profiles of cell density (log,, [number of CFU/milliliter]) with respect to each of the model parameters at 30°C
(only the 10 most sensitive model parameters are shown). ES refers to exponential and stationary phases; SD refers to stationary and death phases.

growth also promote rapid end product accumulation and pre- stationary phases. These were B, ., KT;, and kq;,
cipitate cell death. At low temperatures, this phenomenon was positive sensitivities, and «, T, y, and kq,, which ha

enhance

perature adaptation. In general, 8 of the 14 model parameters
were important in determining growth during exponential and

which have
ve negative

d by the increased energy demand required for tem- sensitivities. Not surprisingly, these are the parameters that

TABLE 3. Multiple-sensitivity (index) analysis results for growth rate at 30°C*

control growth («, kq,, and v), sugar utilization (B, p,, and
kq,), and temperature adaptivity (KT, and 7) in the model.

Constant term Interaction term

Parameter p
(main effect) M1 B KT, kq, a T Y kq,

T 0.330 —0.149 0.0626 0.0299 —0.120 0.279 0 0.0379 0.0257
B 0.331 —0.145 0.0310 —0.119 0.279 0 0.0377 0.0259
KT, 0.141 —0.102 —0.0594 0.126 0 0.0165 0.0106
kq; —0.167 0.0758 —0.0386 0 0.079 0.0506
o 0.272 —0.157 0 —0.146 —0.0938
T 0 Symmetric 0.010 0 0

Y —0.0931 0.0089 —0.0189
kq, —0.0738 —0.0073

“ Listed are the coefficients describing the sensitivity surface about the estimated parameters. Constant terms indicate the mean trend or “main effect” due to that
parameter alone, whereas the interaction terms are a measure of how a perturbation in one of the parameters impacts model sensitivity to the other parameter involved
in the interaction. The terms on the main diagonal indicate the concavity of the sensitivity surface with respect to a particular parameter. The larger values are boldfaced.
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TABLE 4. Multiple-sensitivity (index) analysis for growth rate at 10°C*
Constant term Interaction term
Parameter (main effect)
23} B KT, kq, o T Y kq,

W 0.175 —0.0435 0.113 0.104 —0.0863 0.0804 —0.0120 —0.0254 —0.0037
B 0.176 —0.0447 0.105 —0.0861 0.0802 —0.0123 —0.0256 —0.0038
KT, 0.161 —0.0549 —0.0792 0.0738 —0.0106 —0.0227 —0.0044
kq, 0.0972 —0.136 0.196 —0.0071 0.140 0.141
a —0.102 —0.0383 0.0070 —0.138 —0.141
T 0.0005 Symmetric 0.0266 0.0065 0.0127
v —0.145 0.0434 —0.0490
kq, -0.127 0.0073

“ See Table 3 footnote for explanation of boldfaced values.

The multiple-sensitivity analysis of these parameters re-
vealed that w, and 8 were the most important parameters in
determining the observed growth rate. The qualitative shift in
parameter sensitivity suggests that the observed growth rate
was limited in a manner at 10°C fundamentally different from
that at 30°C. In particular, these results support the previous
suggestion that growth was limited at low temperatures by the
demand for temperature adaptation and that, at warmer tem-
peratures, end product accumulation was the primary limiting
force. For example, the parameter controlling energy cost for
temperature adaptation, T, had virtually no bearing on the
model predictions at 30°C.

Previous researchers (4, 5, 9, 29, 30) have developed models
to predict growth during continuous changes in temperature.
These models use an empirical function, such as Gompertz or
Ratkowsky relationships, to describe temperature-induced lag
phase. In our model, temperature is an independent variable
that controls the predicted metabolic activity of the cell. Using
this mechanistic approach, we are able to predict how changes
in cell physiology produce a temperature-induced lag phase.
While some systematic lack of fit was observed, Fig. 1 to 5
demonstrate the qualitative agreement of predicted and exper-
imental results. Understanding how physiological changes af-
fect growth with varying temperatures may lead to a rational
method for selecting biocontrol or starter cultures.

In this paper, we have shown that the energy costs of tem-
perature adaptation can explain lag phase. Our model pre-
dicted lag phase, death phase, and maximal growth rates. A
quadratic temperature inhibition function was used in our
model; however, we may improve the functional form to allow
for temperature effects above and below the optimal temper-
ature for growth (7). Model components did not vary inde-
pendently of one another, and all affected and depended on
the internal pool of cellular energy (g). It was this dynamic
energy budget aspect of our model that allowed growth pre-
dictions across a range of continuously varying environmental
conditions for the lag, log, and stationary phases of batch
culture. Our model was validated using broth fermentations.
This work may serve as the basis for modeling more complex
fermentation systems. Future research will be aimed at exper-
imentally determining intracellular ATP concentrations during
batch growth of LA221.
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APPENDIX
Our model consists of a system of five differential equations with
dependent variables for cell density (), the extracellular concentra-
tions of glucose (§), lactic acid (L), malic acid (M), and intracellular
energy (Q). Independent variables are time ¢ and temperature 7. The
model parameters and their biological interpretations, units, and esti-
mates are given in Table 2. The differential equations are as follows:

cru: Woof 9 v SN (Al
R T AR LAY
as  —m q
Glucose: E_Tn<qu+q NS (A2)
. . aMm -, q
Malic acid: ? = Tﬂ(m NM (A3)

. Ll -
Energy: dt [F <qu+q> ] LQ

el

dL 91 q > :| [P«z( q ) ]
Ry NS |+ |22 NM
dt [Fn kg, +¢q Fri\kq; + ¢

(AS)

TD*D(T Top)’Q (A4)

Lactic acid:

where
q=QIN

(T - Topl)z

Fr=1+ s
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